-
【数学史2-6】リンド・パピルスの有名問題を解説!方程式は仮置法で解ける!
古代エジプトの数学を知る上で、欠かせない資料が『リンド・パピルス』。「アハ問題」と呼ばれる方程式の問題やピラミッドの勾配の問題、等比数列の和の問題など、様々な分野の問題を扱っています。この記事では、その中でも有名な3つの問題を解説。今の数学でも使われたり、英語圏の童謡になっていたりと、現代にあらゆる形で残っています。 -
【まとめ】三角比の値~マイナーな角度の三角比まで表形式で紹介~
0°から90°までの三角比の値。数学Ⅰで学ぶのは0°、30°、45°、60°、90°の5つです。しかし、これらの角以外にも小数を使わずに正確な値を出せる角度があります。それらの値について、表形式でまとめました。リンク先の個別ページでは、値の出し方まで解説しています。 -
三平方の定理の証明を16種類紹介! 由来や歴史、対象学年まで掲載
100種類以上あると言われる三平方の定理の証明の中から有名なものを抜粋。さらに、必要な予備知識の対象学年で、証明を分類。証明の複雑さや美しさも、主観で5段階評価しました。この記事を読むことで、自分に合った三平方の定理の証明方法が見つけられます。 -
倍数判定法~7の倍数や11の倍数にも見分け方はある!? 証明含めて様々な倍数判定法を解説~
2の倍数かどうかは下1桁で、3の倍数かどうかは各桁の和でわかりますが、7の倍数や11の倍数はどう判定するのでしょうか? 各判定法の証明や必ず覚えるべきものを現役数学教員が解説。必要な判定法を覚えて、約分や素因数分解を効率的に行えるようになりましょう。 -
正五角形の作図方法~コンパスと定規による書き方を解説!なぜ書けるのかまで証明!~
1つの内角が108°という半端な角を持つ正五角形。一辺と対角線の長さの比は、無理数が登場する黄金比であるにも関わらず、定規とコンパスだけで作図をすることができます。作図方法を解説するとともに、なぜその方法で作図ができるのかを三平方の定理から証明します。 -
【数学史6-5】三大作図問題~その概要とギリシャ時代の成果を解説!~
三大作図問題として有名な「円積問題」「立方体倍積問題」「角の三等分問題」。19世紀に作図不可能と証明されるなど知る由もない古代ギリシャでは、数学者たちが問題に挑み、その過程で成果を上げました。また、当時は三大作図問題以外にも議論が盛んだった問題が3つ。古代ギリシャ発祥の合計6つの問題の歴史とその成果について解説します。 -
正五角形と黄金比~正五角形の対角線の性質を解説!含まれる二等辺三角形の個数は?~
1つの内角が108°という半端な角を持つ正五角形。しかし、正五角形の一辺と対角線の比は、昔から人々が魅了されている「黄金比」となります。この記事では、実際にその比を求めるだけでなく、あまり知られていない正五角形と黄金比の関係について解説。黄金三角形を知っていますか? -
【数学史6-4】ピタゴラス~生涯と功績を解説!ピタゴラス教団の影響力とは?
「ピタゴラスの定理」を初めて証明した、古代ギリシャの数学者ピタゴラス。「万物は数なり」という理念のもと、ピタゴラス教団まで創立し、共同生活を営みながら数学の研究をしていました。ピタゴラスが残した数論や幾何学の功績、ピタゴラス本人やピタゴラス教団に関するエピソードについて、この記事では解説します。 -
【数学史6-3】タレス~生涯と功績を解説!数学の祖が自然哲学に与えた影響とは?~
「数学の祖」と呼ばれる、古代ギリシャの数学者タレス。彼がそのように呼ばれる所以は、古代エジプトやバビロニアで知られていた数学の定理を「証明」したことにあります。証明の誕生により、自然哲学は証明ありきの学問へと変わっていきました。この記事では、タレスの年譜や功績、有名なエピソードについえ詳しく解説していきます。 -
【数学史6-2】古代ギリシャの数字はギリシャ文字で表す!分数の書き方まで解説!
古代ギリシャでは、アテネを中心とするアッティカ地方と、ミレトスやサモス島を含むイオニア地方で、別々の数字が使われていました。その2種類の数字の特徴と表記法について、たくさんの例を挙げて解説。ギリシャ文字が数字としてどのように使われたかがわかります。