-
数学者のヒッピアスは円以外の曲線の発明者!円積線で三大作図問題が解ける!【数学史6-12】
三大作図問題の1つである「角の三等分問題」。この問題に初めて一定の成果を出したのは、古代ギリシャの数学者ヒッピアスでした。彼が発明した「円積線」を使うことで、角の三等分線は簡単に引くことができます。この記事では、ヒッピアスの人生について触れるとともに、円積線について細かく解説。円積線を式で表したり、なぜ円積線で角の三等分線が引けるのかを証明します。 -
デモクリトスは原子説から錐体の体積を求めた?万物の根源を数学に適用!【数学史6-11】
原子論で有名なデモクリトス。デモクリトスは錐体の体積を求める研究をしたことでも有名で、錐体は柱体の3分の1であることを初めて証明しました。この記事では、デモクリトスの生涯と功績を詳しく紹介していきます。 -
競技場のパラドックスとは?1が2になる理由と論破方法を具体例で解説!
「競技場のパラドックス」は、時間の最小単位が存在しないことを示す、ゼノン考案のパラドックスです。この記事では、ブロックが動く具体例を通じて、1=2という矛盾が生じる理由と、それを論破する方法をわかりやすく解説しています。相対速度の考え方を適用することで、このパラドックスは簡単に解決できるのです! -
数学者のヒポクラテスって何した人?ヒポクラテスの定理についても解説!【数学史6-10】
三日月図形の研究で有名な、古代ギリシャの数学者ヒポクラテス。円の面積と等しい正方形を作図する難問「円積問題」に取り組む中で、月形という曲線図形を直線図形に変形する術を思いつきました。この記事では、月形をはじめとするヒポクラテスの功績だけでなく、ヒポクラテスの不運なエピソードについてまで解説します。 -
飛んでいる矢は止まっている?パラドックスの意味を具体例で解説!
空中を飛んでいる矢は、ある瞬間においては静止していると考えられるため、実際には動いていないというパラドックスです。この直感に反する主張を通じて、ゼノンは時間と空間の連続性について深い疑問を投げかけました。この記事では、パラドックスの背景、それが提起する哲学的・物理学的問題、そして現代におけるその意味について探ります。読者は、時間と空間の概念に対する我々の理解を根本から揺るがすこの古代の問いについて、新たな視点を得ることでしょう。 -
テオドロスって誰?無理数の証明に利用したテオドロスの螺旋についても解説!【数学史6-9】
キュレネのテオドロスは、√2から√17にあたる数が無理数であることを証明しました(√4と√9、√16以外)。彼が使用した「テオドロスの螺旋」と呼ばれる図形から、なぜ√17までだったのかを解き明かしています。 -
永遠に到達できない?ゼノンの二分法のパラドックスを徹底解説!
ゼノンの二分法のパラドックスを解説し、その歴史的背景と現代数学における解決法を探ります。古代ギリシャ哲学者ゼノンによって提起されたこのパラドックスは、目的地に到達する前に無限の中間点を通過しなければならないという理由で、移動が不可能であると主張します。記事では、この直感に反する主張がどのように現代数学によって克服されているか、無限等比級数の概念を通じて説明しています。 -
無理数を発見したから殺された?ヒッパソスがピタゴラス学派に与えた影響を解説!【数学史6-8】
分数で表せない無理数。世の中の数はすべて有理数であることを主張していたピタゴラス教団において、同教徒であるヒッパソスが証明した無理数の存在は脅威となりました。この記事では、ヒッパソスがどのように証明を見つけ、その後どんな悲運な末路を送ったのかを解説します。 -
アキレスと亀のパラドックスをわかりやすく解説!論破の鍵は収束する無限!
パラドックスの中で有名な「アキレスと亀」。足の速いアキレスが足の遅い亀に追いつくのは当然のように思えますが、古代ギリシャの哲学者ゼノンの考え方によれば追いつけなくなってしまいます。この記事では、ゼノンの考え方を図入りで説明しながら、パラドックスを解決する方法を紹介します。紀元前に無限の考え方を扱うのは難しかったようです。 -
哲学者ゼノンのパラドックスはなぜ生まれた?ゼノンが後世に与えた影響とは?【数学史6-7】
古代ギリシャの哲学者ゼノンの生涯と彼が提案したパラドックスを解説しています。タレスやピタゴラスなどのミレトス学派を批判するために提示されたゼノンのパラドックスは、後の数学において無限を扱う際の大きな障壁となりました。この記事により、ゼノンのパラドックスの内容だけでなく、数学史に与えた影響を知ることができます。