-
単位分数分解(方法編)
すべての分数は、単位分数(分子が$~1~$の分数)の和に分解することができます。この記事では、その分解方法を2通り紹介します。 【Ⅰ 単位分数分解とは?】 まず、... -
テイラーの定理~具体例からわかりやすく解説! 剰余項の由来はコーシーの平均値の定理!?~
解析学で非常に重要な「テイラー級数」。その基になっているのが「テイラーの定理」です。剰余項を含め、定理の内容を具体例からわかりやすく解説し、証明へと進みます。 -
22.5°の三角比 ~半角の公式を使わずに、sin22.5°, cos22.5°, tan22.5°を求める方法を解説!~
22.5°の三角比は近似値を使わずに、値を表すことができます。これらの値がどのように求まるのかを、現役数学教員が2通りの方法で解説。この記事を読むことで、数学Ⅱの半角の公式を使わずに、数学Ⅰまでの知識で値を求める方法がわかります。 -
18°の三角比 ~黄金三角形からsin18°, cos18°, tan18°の値の求める方法を解説~
18°の三角比は近似値を使わずに、値を表すことができます。これらの値がどのように求まるのかを、現役数学教員が解説。この記事を読むことで、36°の三角比から半角の公式を用いる方法、黄金三角形から直接cos18°を求める方法の2種類について理解することができます。 -
球台と球帯
球を2つの平面で切り取ってできた球台について考えます。 Ⅰ 球台と球帯とは? Ⅱ 球台の体積 Ⅲ 球帯の面積 【Ⅰ 球台と球帯とは?】 前記事の「球欠と球冠」同様... -
球欠と球冠
球を1つの平面で切り取ってできる球欠という立体について解説します。球欠の体積は、もとの球の半径に依存しない点が面白いです。 -
私学適性(数学)令和2年度解説 大問2
東京都私学教員適性検査の過去問(令和2年度)の答えを解説付きで載せています。問題集の解答例で、解法を調べたい際にご活用ください。大問1大問2(本ページ)※大... -
私学適性(数学)令和2年度解説 大問1
東京都私学教員適性検査の過去問(令和2年度)の答えを解説付きで載せています。問題集の解答例で、解法を調べたい際にご活用ください。大問1(本ページ)大問2※大... -
複素数の三角関数
$~\sin{x}~$が、$~\sin{z}~$だったら? 複素数の三角関数の定義や成り立つ公式、実数のときとの違いについて解説します。 -
3×3×3の立方陣
平面における魔方陣はよく知られていますが、今回は3次元の魔方陣、すなわち立方陣と呼ばれるものについて紹介します。 Ⅰ 立方陣とは Ⅱ 立方陣の1ラインの和 Ⅲ ...