平面図形– tag –
-
ヒポクラテスの三日月~定理の内容や証明をわかりやすく解説!応用例も紹介!~
中学受験で登場する「ヒポクラテスの定理」。この定理は今から約2500年前に生まれ、曲線図形の面積が直線図形の面積と等しくなるという観点から、当時のギリシャに大きな衝撃を与えました。この記事では、その歴史について触れながらも定理の内容やその証明、応用例について解説します。 -
タレスの定理~中学3年生で習う円の定理を解説!証明は超簡単!~
世界で最初に証明された定理は「タレスの定理」であり、「半円に内接する三角形は直角三角形である」という内容です。実は、タレスの定理と呼ばれる定理は他にもあり、すべて現在の中学レベルの内容でした。それらの紹介と共に、タレスの定理が後世の数学にどのような影響を与えたのかを解説します。 -
三平方の定理の証明を15種類紹介! 由来や歴史、対象学年まで掲載
100種類以上あると言われる三平方の定理の証明の中から有名なものを抜粋。さらに、必要な予備知識の対象学年で、証明を分類。証明の複雑さや美しさも、主観で5段階評価しました。この記事を読むことで、自分に合った三平方の定理の証明方法が見つけられます。 -
正五角形の作図方法~コンパスと定規による書き方を解説!なぜ書けるのかまで証明!~
1つの内角が108°という半端な角を持つ正五角形。一辺と対角線の長さの比は、無理数が登場する黄金比であるにも関わらず、定規とコンパスだけで作図をすることができます。作図方法を解説するとともに、なぜその方法で作図ができるのかを三平方の定理から証明します。 -
正五角形と黄金比~正五角形の対角線の性質を解説!含まれる二等辺三角形の個数は?~
1つの内角が108°という半端な角を持つ正五角形。しかし、正五角形の一辺と対角線の比は、昔から人々が魅了されている「黄金比」となります。この記事では、実際にその比を求めるだけでなく、あまり知られていない正五角形と黄金比の関係について解説。黄金三角形を知っていますか? -
三平方の定理の証明⑭⑮~教科書に載っている証明方法をわかりやすく解説! 実はインドのバスカラの証明だった?~
この記事では、数ある三平方の定理の証明の中でも、中3の教科書によく出てくる2つの証明方法を紹介します。4つの直角三角形を組み合わせてできる図形、誰もが見たことあるはず!? しかも、そのうちの1つはインドの大数学者バスカラに縁があるものです。その歴史と証明を現役数学教員が解説します。 -
三平方の定理の証明⑬~外接円と直角二等辺三角形を利用した証明をわかりやすく解説!~
三平方の定理の証明は、紀元前からあらゆる人があらゆる方法で考え出してきました。 この記事では、外接円と直角二等辺三角形を利用した証明方法を、現役数学教員が... -
折り紙で正三角形を作る
折り紙を使うと、定規やコンパスが無くても正三角形が作れます。 正三角形の折り方とその理由を解説します。 -
三平方の定理の証明⑪⑫~相似を利用した簡単な証明をわかりやすく解説! アインシュタインが考案したものも!?~
この記事では、数ある三平方の定理の証明の中でも、相似を利用した最もシンプルな方法を2つ紹介します。そのうちの1つは、物理学者アインシュタインが少年時代に考案したもの。補助線1本でできる簡単な証明を現役数学教員が解説します。 -
三平方の定理の証明⑩~無限等比数列による証明をわかりやすく解説! 無限を用いた珍しい証明方法とは?~
この記事では、数ある三平方の定理の証明の中でも、20世紀後半に登場した無限等比級数を利用した証明方法が解説します。その証明方法を考えた人物について触れると共に、どのように無限等比級数と直角三角形を繋げるのかを、多数の図を用いて解説しています。
12