平面図形– tag –
-
三平方の定理の証明を16種類紹介! 由来や歴史、対象学年まで掲載
100種類以上あると言われる三平方の定理の証明の中から有名なものを抜粋。さらに、必要な予備知識の対象学年で、証明を分類。証明の複雑さや美しさも、主観で5段階評価しました。この記事を読むことで、自分に合った三平方の定理の証明方法が見つけられます。 -
正五角形の作図方法~コンパスと定規による書き方を解説!なぜ書けるのかまで証明!~
1つの内角が108°という半端な角を持つ正五角形。一辺と対角線の長さの比は、無理数が登場する黄金比であるにも関わらず、定規とコンパスだけで作図をすることができます。作図方法を解説するとともに、なぜその方法で作図ができるのかを三平方の定理から証明します。 -
正五角形と黄金比~正五角形の対角線の性質を解説!含まれる二等辺三角形の個数は?~
1つの内角が108°という半端な角を持つ正五角形。しかし、正五角形の一辺と対角線の比は、昔から人々が魅了されている「黄金比」となります。この記事では、実際にその比を求めるだけでなく、あまり知られていない正五角形と黄金比の関係について解説。黄金三角形を知っていますか? -
【数学史5-7】『九章算術』の三平方の定理を解説!基本から応用まで扱っていた!
紀元前2世紀頃にでき、中国数学を体系立てた数学書である『九章算術』。その9章は、三平方の定理に関するに問題が載っており、基本問題から文章題まで、幅広い難易度の問題を収録しています。各問題には、解くための専用公式が与えられ、その中の一つはピタゴラス数の発見につながるものまでありました。この記事では、9章「句股」の中から、特徴的な問題をいくつか解説します。 -
【数学史5-5】『九章算術』での円周率は3? 実用的な観点で円や弓形を研究していた!
紀元前2世紀頃にでき、中国数学を体系立てた数学書である『九章算術』。その1章は、様々な形の田の面積を求める問題が載っており、その中には円や弓形の田も扱われていました。この記事では、それらの問題からわかる円周率の値や、円や弓形の面積の公式について解説します。 -
三平方の定理の証明⑭⑮~教科書に載っている証明方法をわかりやすく解説! 実はインドのバスカラの証明だった?~
この記事では、数ある三平方の定理の証明の中でも、中3の教科書によく出てくる2つの証明方法を紹介します。4つの直角三角形を組み合わせてできる図形、誰もが見たことあるはず!? しかも、そのうちの1つはインドの大数学者バスカラに縁があるものです。その歴史と証明を現役数学教員が解説します。 -
【数学史2-5】古代エジプトの円周率は3.16! 正方形から円の面積を近似する方法とは?
古代エジプトでは、円周率を約3.16として計算していました。その求め方は、円という曲線を八角形という直線に近似する方法。さらに、「円積問題」の影響を受け、平方数まで登場します。この記事では、エジプト文明の背景にも触れながら、たくさんの図と共に円周率について解説しています。 -
三平方の定理の証明⑬~外接円と直角二等辺三角形を利用した証明をわかりやすく解説!~
三平方の定理の証明は、紀元前からあらゆる人があらゆる方法で考え出してきました。 この記事では、外接円と直角二等辺三角形を利用した証明方法を、現役数学教員が... -
折り紙で正三角形を作る
折り紙を使うと、定規やコンパスが無くても正三角形が作れます。 正三角形の折り方とその理由を解説します。 -
三平方の定理の証明⑪⑫~相似を利用した簡単な証明をわかりやすく解説! アインシュタインが考案したものも!?~
この記事では、数ある三平方の定理の証明の中でも、相似を利用した最もシンプルな方法を2つ紹介します。そのうちの1つは、物理学者アインシュタインが少年時代に考案したもの。補助線1本でできる簡単な証明を現役数学教員が解説します。