「円周率の新しい求め方」ではない?話題の論文をざっくり解説!
2023年5月23日、高校生4人が円周率の新しい求め方を証明したという記事が、神戸新聞より掲載されました。しかし、その高校生たちが英語で書いた論文のタイトルは「円に内接する多角形の中で、面積が最大になるのは正多角形であることの初等的な証明」となっています。この記事では、その論文の内容をざっくりと解説!メディアの誇張に騙されないよう、論文の中身を大まかに理解しましょう。【数学史6-7】ヒッピアス~生涯と功績を解説!円積線で角の三等分線がかける!~
三大作図問題の1つである「角の三等分問題」。この問題に初めて一定の成果を出したのは、古代ギリシャの数学者ヒッピアスでした。彼が発明した「円積線」を使うことで、角の三等分線は簡単に引くことができます。この記事では、ヒッピアスの人生について触れるとともに、円積線について細かく解説。円積線を式で表したり、なぜ円積線で角の三等分線が引けるのかを証明します。【数学史6-6】キオスのヒポクラテス~三日月図形がもたらす歴史的な意味を解説!~
三日月図形の研究で有名な、古代ギリシャの数学者ヒポクラテス。円の面積と等しい正方形を作図する難問「円積問題」に取り組む中で、月形という曲線図形を直線図形に変形する術を思いつきました。この記事では、月形をはじめとするヒポクラテスの功績だけでなく、ヒポクラテスの不運なエピソードについてまで解説します。【数学史まとめ5】古代中国の数学
四大文明の一つで長い歴史を持つ中国。 しかし、紀元前213年の焚書政策により、紀元前の数学関係の資料はほとんど失われてしまいました。 そのため、古代中国の数...【数学史まとめ4】古代インドの数学
四大文明の1つとして有名なインダス文明を起源とする古代インド。インダス文字の解読が進んでいないため、現在わかっている最古のインド数学は、紀元前1000年頃の儀式書『シュルバスートラ』を読み解いたものとなっています。この記事では、古代インド数学の発展に関する出来事を年表形式でまとめるとともに、その内容をざっくり解説します。三平方の定理の証明⑯~2023年最新!三角比を用いた証明をわかりやすく解説! 発見者は10代の少女?~
この記事では、数ある三平方の定理の証明の中でも、2023年最新の証明方法を紹介します。循環論法になりやすい三角比を使った珍しい証明方法です。話題になっている方法をどこよりもていねいに解説しています。【証明あり】単位分数分解のやり方を解説!単位分数の和は無限通りに表せる!
分数を単位分数の和で表す「単位分数分解」。実は、単位分数分解は機械的かつ無限通りに行うことができます。この記事では、分解の方法を2種類解説するだけでなく、どんな分数でも無限通りに単位分数分解できる理由をしっかりと証明。例をたくさん使っているため、理解しやすい記事となっています。【教員向け】数学の授業で使える小ネタ集2(中1「文字と式」)
数学の授業に悩んでいる教員必見!授業準備に十分な時間がとれなくても、数学の小ネタを授業の中で入れることで、生徒が面白いと思える授業にしていくことができます。この記事では、中学数学の2つめの単元である「文字と式」に絡めた数学小ネタを紹介!生徒の笑いや「へぇ」を導き出す小ネタを仕入れて授業に臨みましょう!【教員向け】数学の授業で使える小ネタ集1(中1「正負の数」)
数学の授業に悩んでいる教員必見!授業準備に十分な時間がとれなくても、数学の小ネタを授業の中で入れることで、生徒が面白いと思える授業にしていくことができます。この記事では、中学数学の最初の単元である「正負の数」に絡めた数学小ネタを紹介!生徒の笑いや「へぇ」を導き出す小ネタを仕入れて授業に臨みましょう!2023はどんな数?素因数分解や約数、2023を含む数列を解説!
2023ってどんな数?2023は素数なの?という疑問に答えます!実は、2023は7や17で割りきれるため、素数ではありません。しかし、幸運数やハーシャッド数、ピタゴラス数にはあてはまっています。2023年の始まりにふさわしい、縁起の良さそうな式も紹介しているため、この記事を読むことで2023に親しみを持つことができます。

数学を歴史から学ぶ