【数学史まとめ3】バビロニアの数学
メソポタミアの数学のことを、数学史上では「バビロニアの数学」と言い表します。紀元前1750年頃に数体系が確立していたバビロニア。実生活で使う範囲を超えた数学の記録が粘土板に今も残っています。この記事では、バビロニアの数学に関する事柄を年表形式でまとめると共に、バビロニアが紀元前に誇った高度な数学を大まかに解説します。【数学史まとめ2】古代エジプトの数学
ナイル川の流域で、土地の測量から始まった古代エジプトの数学。その時代の数学を紐解く資料である『リンド・パピルス』には、象形文字を使って数学の問題と解説が書かれています。その内容としては、実生活に基づく問題が多く、古代エジプトの数学を特徴づけるものと言えるでしょう。この記事では、古代エジプトの数学に関する事柄を年表形式でまとめると共に、この時代の数学を大まかに解説します。【数学史2-6】リンド・パピルスの有名問題を解説!方程式は仮置法で解ける!
古代エジプトの数学を、現代にまで伝える役割を果たしたパピルス。 そのパピルスの中でも最も有名なのが、紀元前1650年頃に書記アーメスが書いた『リンド・パピルス...【まとめ】三角比の値~マイナーな角度の三角比まで表形式で紹介~
0°から90°までの三角比の値。数学Ⅰで学ぶのは0°、30°、45°、60°、90°の5つです。しかし、これらの角以外にも小数を使わずに正確な値を出せる角度があります。それらの値について、表形式でまとめました。リンク先の個別ページでは、値の出し方まで解説しています。【まとめ】三平方の定理の証明~由来や歴史に加え、10種類以上の証明方法を対象学年別に紹介~
100種類以上あると言われる三平方の定理の証明の中から有名なものを抜粋。さらに、必要な予備知識の対象学年で、証明を分類。証明の複雑さや美しさも、主観で5段階評価しました。この記事を読むことで、自分に合った三平方の定理の証明方法が見つけられます。倍数判定法~7の倍数や11の倍数にも見分け方はある!? 証明含めて様々な倍数判定法を解説~
2の倍数かどうかは下1桁で、3の倍数かどうかは各桁の和でわかりますが、7の倍数や11の倍数はどう判定するのでしょうか? 各判定法の証明や必ず覚えるべきものを現役数学教員が解説。必要な判定法を覚えて、約分や素因数分解を効率的に行えるようになりましょう。正五角形の作図
内角が72°という半端な角を持つ正五角形。対角線に注目すると、定規とコンパスだけで作図をすることができます。その方法を解説するとともに、ピタゴラスについて触れます。数学史6-5 三大作図問題と3つの議題
古代ギリシャでは、三大作図問題をはじめとする6つの大きな問題が数学者の関心を集めていました。 この記事では、それら1つ1つの概要について解説します。正五角形と黄金比
人々が美しいと感じる黄金比。正五角形に関する黄金比の性質を紹介します。 【Ⅰ 黄金比とは?】 まずは黄金比そのものについて確認しておきます。 黄金比 次の値で表...数学史6-4 ~ギリシャ時代(ピタゴラス)~
知名度 No.1 の数学者ピタゴラス。 その生涯と功績を辿ります。 ←前回 数学史6-3 ~ギリシャ時代(タレス)~ 次回→ 数学史6-5 ~ギリシャ時代(三大作図問題...

数学を歴史から学ぶ