純粋数学– category –
-
シンプソンの公式(応用編②)
シンプソンの公式は単純な積分のみならず、考え方次第では体積を求めるのにも使えます。 前回に引き続き、その例をいくつか紹介します。 Ⅰ 体積への拡張 Ⅱ 球の体積 Ⅲ... -
シンプソンの公式(応用編①)
シンプソンの公式は単純な積分のみならず、考え方次第では体積を求めるのにも使えます。 今回はその例をいくつか紹介します。 Ⅰ 体積への拡張 Ⅱ 三角柱の体積 Ⅲ 円錐... -
シンプソンの公式(基本編)
3次以下の関数の積分を求める際に使えるシンプソンの公式。まずは例と簡単な証明を与えます。 Ⅰ シンプソンの公式 Ⅱ 基本例 Ⅲ 反例 Ⅳ 証明1 【】 1743年、イギ... -
メルカトル級数
1668年、ニコラウス・メルカトルによって示された級数です。 $~\log{2}~$ の値が単純な分数の足し算・引き算によって表されます。今回もこの級数を使って、近似値計算... -
特性方程式で漸化式が解ける理由
漸化式を解く際に有効な手段として、特性方程式の解を使って式変形をする方法があります。 なぜ特性方程式の解が式変形の上で有効なのかを解説します。 -
iのi乗
虚数 $~i~$ の $~i~$ 乗はなんと実数になります。実際に $~i^i~$ を計算し、近似値を算出しました。 Ⅰ $~i^i~$ の計算 Ⅱ $~i^i~$ の近似値 【】 $~i~$ の $~i~$ 乗 ... -
複素数の対数関数
対数と言えば $~\log{x}~$ ですが、この定義域を複素数の範囲まで拡張すると、話が単純ではなくなってしまいます。対数関数の表し方とその導き方を紹介します。 Ⅰ 対数... -
三平方の定理の証明②~ユークリッドの証明方法をわかりやすく解説! 100種類の証明が生まれたのは『原論』が原因?~
三平方の定理の証明ブームを引き起こした張本人ユークリッド。証明ブームの要因となる歴史的著作にも触れつつ、彼自身が考えた三平方の定理の証明について解説します。この記事を読むことで、最も有名な図を使った証明方法を理解できます、 -
三平方の定理の証明①~ピタゴラスの証明の方法をわかりやすく解説! 定理の本当の発見者はバビロニア人?~
この記事では、数ある三平方の定理の証明の中でも、ピタゴラスが証明した方法を現役数学教員が解説します。また、三平方の定理の生みの親はピタゴラスではなかったという歴史にも触れるため、古代ギリシャの時代背景についても理解を深めることができます。 -
【有名問題】√2が無理数であることの証明~3種類の証明方法とは?~
古代ギリシャから考えられていたルート2 が無理数であることの証明。その歴史の深さと、実際の証明方法を3種類解説します。